-
-
May 15, 2023 at 8:32 am
Solution
ParticipantIt is possible to use different discretization schemes for the flow and the adjoint solvers in ANSYS Fluent. This is often recommended to have a higher accuracy for the flow solver and better stability for the adjoint solver. Having different discretization schemes can have some adverse effect on the calculation of the value of the observable (see also solution 2058309) but it offers a great advantage with respect to stability. The attached document shows examples that you can better judge the influence of using different schemes for flow and adjoint solvers.
Attachments:
1. 2059054.pdf
-

Introducing Ansys Electronics Desktop on Ansys Cloud
The Watch & Learn video article provides an overview of cloud computing from Electronics Desktop and details the product licenses and subscriptions to ANSYS Cloud Service that are...

How to Create a Reflector for a Center High-Mounted Stop Lamp (CHMSL)
This video article demonstrates how to create a reflector for a center high-mounted stop lamp. Optical Part design in Ansys SPEOS enables the design and validation of multiple...

Introducing the GEKO Turbulence Model in Ansys Fluent
The GEKO (GEneralized K-Omega) turbulence model offers a flexible, robust, general-purpose approach to RANS turbulence modeling. Introducing 2 videos: Part 1Â provides background information on the model and a...

Postprocessing on Ansys EnSight
This video demonstrates exporting data from Fluent in EnSight Case Gold format, and it reviews the basic postprocessing capabilities of EnSight.
- ANSYS Fluent: Introduction to the GEKO Turbulence Model Part I
- How can I create a Cell Register from a Cell Zone?
- ANSYS System Coupling: Two Way Fluid Structure Interaction – Part 1
- Delete or Deactivate Zone in Fluent
- Left-handed faces troubleshooting
- Running Python Script from Workbench
- ANSYS Polyflow: Adaptive Meshing Based on Contact
- Check CPU Time in ANSYS FLUENT
- How to overcome the model information incompatible with incoming mesh error?
- Apply Custom Material Properties in Fluent
© 2023 Copyright ANSYS, Inc. All rights reserved.